Инструкция по эксплуатации цифрового USB прибора для измерения вольт-амперных характеристик.

Д.А. Коновалов, н.с. лаб. ФПС КФТИ ФИЦ КазНЦ РАН

Прибор для измерения вольт-амперных характеристик относится к классу виртуальных цифровых приборов. Он состоит из физического устройства – программно-управляемого источникаизмерителя и прикладного программного обеспечения, реализующего логику работы прибора и интерфейс оператора.

В данном документе содержатся краткие сведения о конструкции и работе прибора. В последнем разделе (**5.3**) приведен порядок работы. Подробные описания схемно-технической, программной и конструктивной реализации прибора приведены в следующих документах:

- «Цифровой USB прибор для измерения вольт-амперных характеристик.pdf»;
- «СПО-Цифровой USB прибор для измерения BAX.pdf» Специальное программное обеспечение цифрового USB прибора для измерения вольт-амперных характеристик;
- «ППО-Цифровой USB прибор для измерения BAX.pdf» Прикладное программное обеспечение цифрового USB прибора для измерения вольт-амперных характеристик

Оглавление

1	Oc	Особенности конструкции					
2	Технические параметры						
3	Ло	гичесн	кая структура ППО	2			
4	Организация информационного обмена с USB прибором						
5 Алгоритм исполнения программы ППО							
	5.1	Алго	оритм калибровки:	3			
	5.2	Алго	ритм работы программного блока VAC	3			
	5.2	2.1	Формат файла с результатами измерений	4			
	5.3	Пор	ядок работы	5			
	5.3	3.1	Включение прибора	5			
	5.3.2 5.3.3 5.3.4		Подключение объекта измерения	5			
			Проведение измерений	5			
			Выключение прибора	6			
6	Ил	люстр	ации	7			

1 Особенности конструкции

- Возможность проведения ВАХ измерений с постоянным шагом по току или по напряжению;
- Управляющий контроллер Iskra Nano Pro (Arduino Nano)
- Измерения осуществляются с помощью аналого-цифрового преобразователя (АЦП) ADS1220.
- Измерительное напряжение задается с помощью цифро-аналогового преобразователя (ЦАП) MAX5815;
- Ток через объект исследования задается с помощью источника тока, управляемого напряжением (ИТУН);

2 Технические параметры

- Диапазон установки тока: -40 мА ... +40 мА;
- Дискретность установки тока: 0.1 мкА;
- Диапазон рабочего напряжения: -20 В ... + 20 В;
- Дискретность установки напряжения: 50 мкВ;
- Точность измерения тока и напряжения: 1%;
- Разрешение измерения тока: 0.5 мкА;
- Разрешение измерения напряжения: 40 мкВ (скорость преобразования 20 SPS);
- Время измерения одной точки (установка тока + измерение напряжения и тока): 50 мс (скорость преобразования 175 SPS и более);
- Питание: постоянное напряжение 5 В, 500 мА;
- Габариты источника-измерителя: 122х102х25 мм.

В состав цифрового USB прибора для измерения вольт-амперных характеристик (далее USB прибор) входит прикладное программное обеспечение (ППО). ППО запускается на рабочей станции под управлением операционной системы Windows. ППО предназначено для реализации функций:

- управления и контроля состояния USB прибора;
- сбора, окончательной обработки, визуализации и сохранения результатов измерения USB прибором.

ППО реализуется как программа на графическом языке программирования «G» фирмы National Instruments. Для работы программы необходимо наличие рабочей станции с установленной на ней средой для выполнения кода LabVIEW 2012 SP1 Runtime.

ППО представлено скомпилированным исполняемым .exe файлом.

3 Логическая структура ППО

Структурно ППО состоит из трех крупных блоков, оформленных на виртуальной лицевой панели прибора в виде отдельных вкладок, имеющих интуитивно понятный графический интерфейс:

- VAC измерение ВАХ образца, подключенного к измерительным клеммам;
- Calibrate калибровка USB прибора;
- **Сатега** работа с USB-камерой. В составе расширенной версии ППО VAC-2_3-Camera.

• Service – графический стенд, показывающий упрощенную принципиальную схему прибора, и позволяющий управлять его отдельными модулями. Используется для отладки и для обучения работе с устройствами сбора данных на базе ЦАП и АЦП.

4 Организация информационного обмена с USB прибором

ППО взаимодействует с USB прибором по последовательному интерфейсу по протоколу RS-232. Скорость передачи данных 115200 бит/с без контроля четности, 8 бит данных, 1 стоп-бит.

5 Алгоритм исполнения программы ППО

При запуске исполняемого файла *VAC-2_1.exe* происходит инициализация графического интерфейса и последовательного порта для связи с прибором. После этого происходит переключение на вкладку **Calibrate** и управление передается программному блоку калибровки (Рис. 2). Калибровка запускается автоматически и длится несколько секунд. По окончанию калибровки управление передается на вкладку программного блока **VAC** (Рис. 1). Вкладка **Service** при эксплуатации прибора не используется. Вкладка **Camera** (Рис. 3) для позиционирования зондов активируется кликом. Также на неё передается управления после окончания цикла измерений с вкладки **VAC** для сохранения архивного снимка. При нажатии на экранную кнопку **EXIT** работа активного программного блока прерывается, выход ИТУН отключается от измерительных клемм, все каналы ЦАП обнуляются, АЦП конфигурируется в состояние по умолчанию, последовательный порт освобождается и программа завершает свою работу.

5.1 Алгоритм калибровки:

- выход ИТУН отключается от измерительных клемм;
- калибровка каналов измерения напряжения и тока:
 - производятся измерения с накоплением для каждого значения коэффициента усиления;
 - о формируются массивы поправок.
- определение значения измерительного сопротивления:
 - встроенный программируемый источник тока микросхемы АЦП программируется на ток 1 мА и подключаются к измерительному сопротивлению;
 - производится измерение с накоплением и с учетом калибровки. Полученное значение имеет размерность mV/mA, т.е. Ом;

5.2 Алгоритм работы программного блока VAC

На вкладке **VAC** (Рис. 2) расположены восемь элементов управления и три элемента индикации. Элементы управления:

- поле Режим выпадающий список: Гальваностат, Потенциостат;
- поле I max, mA ;
- поле Step I, mA отображается только в режиме Гальваностат;
- поле U max, V отображается только в режиме Потенциостат;
- поле Step U, V отображается только в режиме Потенциостат;
- экранная кнопка **START** ;
- два поля блока Диапазоны (U, I) задают коэффициенты усиления масштабного усилителя микросхемы АЦП для каналов измерения напряжения и тока.

Нажатие кнопки **START** запускает процесс измерения:

- В режиме Гальваностат:
 - о выход ИТУН подключается к измерительным клеммам;
 - задается ток (+ I max);
 - о в цикле:
 - производится измерение значений тока, протекающего через образец, и напряжения, падающего на образце;
 - заданный ток уменьшается на величину (*Step I*).
 - о условие завершения цикла:
 - заданный ток достиг значения (- I max), или
 - напряжение, падающее на образце, меньше или равно (- 20 В), или
 - нажата кнопка EXIT.
 - по завершению цикла выход ИТУН отключается от измерительных клемм, все каналы ЦАП обнуляются, АЦП конфигурируется в состояние по умолчанию, оператору предлагается сохранить результат измерений.
 - если результаты были сохранены, происходит переключение на вкладку Camera (только для расширенной версии ППО – VAC-2_3-Camera).
- В режиме Потенциостат:
 - о производится проверка условий + I (+U max) ≤ + I max, I (- U max) ≥ I max;
 - о при необходимости значения +U max и U max корректируются;
 - о выход модуля ЦАП подключается к измерительным клеммам;
 - о задается напряжение (+ U max);
 - о в цикле:
 - производится измерение значений тока, протекающего через образец, и напряжения, падающего на образце;
 - заданное напряжение уменьшается на величину (*Step U*).
 - о условие завершения цикла:
 - заданное напряжение достигло значения (- U max), или
 - нажата кнопка EXIT.
 - по завершению цикла выход модуля ЦАП отключается от измерительных клемм, все каналы ЦАП обнуляются, АЦП конфигурируется в состояние по умолчанию, оператору предлагается сохранить результат измерений.
 - если результаты были сохранены, происходит переключение на вкладку Camera (только для расширенной версии ППО – VAC-2_3-Camera).

Элементы индикации:

- окно XY Graph динамически строит вольт-амперную характеристику в процессе измерительного цикла.
- два цифровых индикатора U, mV и I, mA, расположенные поверх окна XY Graph отображают значения тока и напряжения, измеренные в текущем шаге измерительного цикла.

5.2.1 Формат файла с результатами измерений

Результаты сохраняются в текстовый файл в виде таблицы из двух столбцов, разделенных символом табуляции:

```
U, mV I, mA
5229.966927 0.978287
5226.267585 0.968482
```

•••

5.3 Порядок работы

5.3.1 Включение прибора

- 1. Подключить кабель питания с разъемом mini-USB к гнезду прибора, обозначенному на Рис. 4 цифрой 1.
- 2. Подключить интерфейсный кабель с разъемом micro-USB к гнезду прибора, обозначенному на Рис. 4 цифрой 2.

5.3.2 Подключение объекта измерения

Для подключения объекта измерения используется разъём типа WF-4 (DS1070-4F), обозначенный на Рис. 4 цифрой 3. Подключение осуществляется с помощью ответного разъема типа HU-4 (DS1070-4F). В комплекте прибора имеются два переходника: а) на клеммную колодку и б) на разъем Jack 3.5 mm. Полярность подключения указана на Рис. 5.

5.3.3 Проведение измерений

- 1. Запустить исполняемый файл VAC-2_3.exe или VAC-2_3-Camera.exe.
- Переключиться на вкладку Camera (только для расширенной версии ППО VAC-2_3-Camera) и, ориентируясь на изображение, осуществить позиционирование измерительных зондов на поверхности образца;
- 3. Переключиться на вкладку Calibrate;
- 4. Дождаться окончания процесса калибровки и, в появившемся диалоговом окне, нажать экранную кнопку ОК. Активируется вкладка VAC (Рис.).
- 5. Из выпадающего списка в поле Режим выбрать нужный режим измерений;
- 6. В поле I max, mA задать максимальное значение тока через объект измерения;
- 7. В режиме Гальваностат:
 - а. В поле Step I, mA задать значение шага по току;
- 8. В режиме Потенциостат:
 - а. В поле U max, V задать максимальное значение напряжения;
 - b. В поле Step U, V задать значение шага напряжения;
- 9. Нажать экранную кнопку START.
- 10. Дождаться окончания процесса измерения.
- 11. В появившемся диалоговом окне, в ответ на предложение сохранить результат измерения, выбрать вариант SAVE или Cancel.
- 12. После сохранения результатов происходит переключение на вкладку Camera (только для расширенной версии ППО VAC-2_3-Camera). Поля Path и File заполняются автоматически после сохранения результатов измерений, выполненных на вкладке VAC. Сохранение графического файла с расширением .png произойдет после нажатия на экранную кнопку Снимок.

13. После этого можно детально, с помощью инструмента Graph palette, на вкладке **VAC** рассмотреть интересующие участки, полученной вольт-амперной характеристки:

0.0002-					
-25000	-20000	-15000	-10000	-5000	Ó
			U, m	V	
· · · · · · · · · · · · · · · · · · ·	:				

5.3.4 Выключение прибора

- 1. Нажать экранную кнопку ЕХІТ.
- 2. Закрыть окно исполняемого файла VAC-2_1.exe.
- 3. Отключить интерфейсный кабель.
- 4. Отключить кабель питания.

6 Иллюстрации

a)

Рис. 1. Вкладка программного блока VAC. (а) – режим Гальваностат, (б) – режим Потенциостат

	"	\ ''	Standart	doviation			
GAIN	mean U	mean I	U	Ι	mean mV/mA		
1	0.0042236	-0.008838	0.00942668	0.0101401	9.234998	0.000288	standard deviation
2	0.0063599	-0.01427	0.00444123	0.00727304			
4	0.007251	-0.0136534	0.00383242	0.00343604	9.213905 mV/mA		
8	0.0040435	-0.0171416	0.00256287	0.00156818			
16	0.0012193	-0.0185881	0.00115789	0.00109081			
32	9.3E-5	-0.0214028	0.00053617	0.00094142			
64	-0.0005467	-0.0215472	0.00025593	0.00037506			
128	-8.4E-6	-0.0211074	0.00029864	0.00027928			
	0.000044 U	-0.02079		,			

Рис. 2. Вкладка программного блока Calibrate.

Рис. 3. Вкладка программного блока Camera.

Рис. 4

a)

Рис. 5